Chi-square and the Lottery

Christian Genest1, Richard A. Lockhart2 and Michael A. Stephens2

1Département de mathématiques et de statistique, Université Laval, Québec (Québec), Canada G1K 7P4
2Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Summary

The winners of many lotteries are determined by selecting at random some numbered balls from an urn. This paper discusses the use of Pearson’s standard goodness-of-fit statistic to test for the equiprobability of occurrence of such lottery numbers, whether taken individually, in pairs or in larger subsets. Because the numbers are drawn without replacement, Pearson’s statistic does not follow a simple chi-square distribution, even for large samples of draws. In fact, it can be shown that its asymptotic distribution is that of a weighted sum of chi-square random variables. An explicit formula is given for the weights, and this result is used to check the uniformity of winning numbers in Canada’s Lotto 6/49 over a period of nearly twenty years.

Key words: Chi-square distribution; goodness-of-fit; Johnson association scheme; lottery; Lotto 6/49; Pearson’s statistic.

Submitted 23 October 2001
Revised 28 December 2001
1 Introduction

A large number of countries of the world run lotteries, and several sub-national political entities (states, provinces, territories, etc.) do as well. A common way in which many of these lotteries are run is as follows. The gambler picks \(k \) distinct numbers from the set \(\{1, \ldots, N\} \), and then pays a fixed amount to register the selection with an authorized agent. Alternatively, the gambler may prefer to purchase a “QuickPick” ticket whose random subset of \(k \) numbers is generated automatically using an algorithm devised by the Lottery Corporation. At the close of an allotted time period, the winning combination is determined by drawing at random \(k \) balls without replacement from an urn containing identical balls labeled 1 through \(N \). The lottery is then typically referred to as “Lotto \(k/N \).”

In Canada’s Lotto 6/49, for example, \(k = 6 \) winning numbers ranging from 1 to \(N = 49 \) are drawn biweekly without replacement, and participants whose ticket matches 3, 4, 5 or 6 of the numbers drawn win prizes. Other countries such as the United Kingdom, France, Germany, Spain or the Philippines have their own weekly or biweekly draws of Lotto 6/49, and variants such as Lotto 5/26, 6/25, 6/42, 6/44, 6/45, 6/47, 6/51, 6/52, 6/53, and 6/69 have been adapted to market size in Australia, Ireland, and several American states.

For any lottery of the type \(k/N \), a natural issue is whether all the numbers forming the winning combination come up with equal probability. The randomness of the selections generated by the “QuickPick” algorithm is of similar concern. A drawing mechanism, be it electronic or mechanical, failing this criterion would clearly induce inequity. More ambitiously, one may wish to test that all subsets of two numbers have the same probability of occurrence, and likewise for subsets of size three, four, and so on.

For testing equiprobability of the \(N \) individual numbers, a natural way to proceed is to determine the frequency \(O_i \) with which the numbers \(i = 1, \ldots, N \) occurred in \(n \) lottery draws, and then attempt to compare these observed counts with expected counts \(E_i = nk/N \) using the traditional Pearson statistic

\[
X^2 = \sum_{i=1}^{N} \frac{(O_i - E_i)^2}{E_i}.
\]

However, the asymptotic distribution of this statistic is not the usual chi-square with \(N - 1 \) degrees of freedom, denoted by \(\chi^2_{N-1} \), under the null hypothesis of equiprobability. This is because the observations are not drawn with replacement. Indeed, once a number has been selected among the \(k \) winning numbers drawn on a particular occasion, it cannot be chosen again in that same draw; the variability of the standard statistic (1) is thereby reduced.
In a study closely related to this one, Joe (1993) mentions that it is necessary to modify X^2 to $J = (N-1)X^2/(N-k)$ in order to obtain for the latter the limiting distribution χ^2_{N-1}. The same adjustment for sampling without replacement is used by Stern & Cover (1989) in a study of the distribution of tickets purchased in Canada’s Lotto 6/49. As noted by Bellhouse (1982), who had made the same point in an earlier paper on lotteries, similar problems with X^2 arise in the analysis of contingency tables based on sample survey data; see, for instance, Fellegi (1980), Holt, Scott & Ewing (1980) or Rao & Scott (1987).

It is shown below that when testing the null hypothesis of equiprobability of subsets of size $c = 1, \ldots, k$, the statistic X^2 behaves asymptotically as a sum of c independent weighted chi-square random variables. There are then two natural courses of action: either one tries to adapt Pearson’s X^2 statistic in such a way that its limiting distribution remains a simple chi-square, or one can use (1) and find the weights in its asymptotic distribution. While Joe (1993) chose the first strategy, the second option is followed here.

The limiting distribution of X^2 in the case $c = 2$ is described in Section 2. This leads in Section 3 to a general asymptotic result including explicit formulas for the weights in the case $1 \leq c \leq k$; the details of the proof are relegated to an Appendix. Expressions for the asymptotic mean and variance of X^2 are given in Section 4, where a strategy for computing approximate limiting p-values is described. In Section 5, comparisons with Joe’s statistic are made for the case $c = 2$, and in Section 6, the X^2 statistic is used to investigate the fairness of Canada’s Lotto 6/49. A short conclusion is provided in Section 7.

2 Asymptotic null distribution of X^2 in the case $c = 2$

Given a random sample of n draws of k integers among $\{1, \ldots, N\}$, suppose that one wishes to test that all subsets $\{i, j\}$ of numbers $1 \leq i < j \leq N$ come up with equal probability. There are $\binom{N}{2}$ such subsets, each of which corresponds to a cell in Pearson’s statistic X^2. Denoting by $O_{\{i,j\}}$ and $E_{\{i,j\}}$ the observed and expected counts for cell $\{i, j\}$, respectively, one has

$$X^2 = \sum_{i=1}^{N-k} \sum_{j=i+1}^{N} \frac{(O_{\{i,j\}} - E_{\{i,j\}})^2}{E_{\{i,j\}}}$$

(2)

with

$$E_{\{i,j\}} = e_2 = n \frac{k(k-1)}{N(N-1)} = n \frac{(N-2)}{k(N)}$$

for all $1 \leq i < j \leq N$ under the null hypothesis of equiprobability.
Letting O and E denote the vectors of $O_{i,j}$’s and $E_{i,j}$’s listed in some order (the same for both; e.g., the lexicographic ordering \{1, 2\}, \{1, 3\}, ...), one may write

\[
X^2 = \binom{N}{k} \binom{N}{k} Y_n^* Y_n
\]

in terms of $Y_n = (O - E)/\sqrt{n}$, a random vector of length $\binom{N}{k}$. The null distribution of Y_n has mean 0 and covariance matrix Σ whose entries are $1/n$ times the covariances between the observed counts $O_{i,j}$ and O_{i^*, j^*} for all possible choices of $1 \leq i < j \leq N$ and $1 \leq i^* < j^* \leq N$. In other words,

\[
\Sigma_{i,j, i^*, j^*} = \frac{1}{n} \text{cov} \left(O_{i,j}, O_{i^*, j^*} \right).
\]

Since $O - E$ is a sum of n independent and identically distributed random vectors, this covariance does not depend on n. Therefore, the asymptotic null distribution of Y_n is normal with mean 0 and covariance Σ. As the number n of draws tends to infinity, standard results imply that X^2 converges in distribution to

\[
\frac{\binom{N}{k}}{\binom{N-2}{k-2}} \sum_{\ell=1}^{\binom{N}{2}} \lambda_{\ell} Z_{\ell}^2,
\]

where the Z_{ℓ}’s are mutually independent standard normal variates and the λ_{ℓ}’s are the eigenvalues of Σ. As it happens, however, the λ_{ℓ}’s take only two possible non-zero values, viz.

\[
\kappa_1 = (k - 1) \frac{\binom{N-3}{k-2}}{\binom{N}{k}} \quad \text{and} \quad \kappa_2 = \frac{\binom{N-4}{k-2}}{\binom{N}{k}},
\]

and these eigenvalues have multiplicity $N - 1$ and $N(N - 3)/2$, respectively.

Consequently, the asymptotic distribution of X^2 is of the form

\[
w_1 \chi^2_{N - 1} + w_2 \chi^2_{N(N - 3)/2}
\]

with weights $w_\ell = \kappa_\ell/e_2$, $\ell = 1, 2$, given explicitly by

\[
w_1 = (k - 1) \frac{\binom{N-3}{k-2}}{\binom{N-2}{k-2}} \quad \text{and} \quad w_2 = \frac{\binom{N-4}{k-2}}{\binom{N-2}{k-2}}.
\]

To establish this result, first observe that if $A_{i,j}$ denotes the event that balls i and j are among the k balls drawn, then

\[
\frac{1}{n} \text{cov} \left(O_{i,j}, O_{i^*, j^*} \right) = P \left(A_{i,j} \cap A_{i^*, j^*} \right) - P \left(A_{i,j} \right) P \left(A_{i^*, j^*} \right)
\]

\[
= \binom{N-2-d}{k-2-d} - \binom{N-2}{k-2} \binom{N-2}{k-2} = r_2,
\]

(4)
where
\[
d = |\{i, j\} \setminus \{i^*, j^*\}| = |\{i^*, j^*\} \setminus \{i, j\}|
\]
is the cardinality of the set difference between \(\{i, j\}\) and \(\{i^*, j^*\}\), and hence equals 2, 1 or 0 according as these two sets have 0, 1, or 2 element(s) in common, respectively. It is thus natural to write
\[
\Sigma = \lim_{n \to \infty} \text{var}(Y_n) = r_0Q_0 + r_1Q_1 + r_2Q_2
\]
as a weighted sum of three \(\{0,1\}\)-valued matrices \(Q_0, Q_1\) and \(Q_2\) of size \(N(N-1)/2\) whose entries indicate which subsets \(\{i, j\}\) and \(\{i^*, j^*\}\) have 2, 1, or no common element(s), respectively.

Illustration. To fix ideas, consider a simpler example than the 6/49 lottery. Suppose that there are only \(N = 5\) balls, \(k = 3\) of which are to be drawn. Then \(Q_0\) is the identity matrix of order \(N(N-1)/2 = 10\), and \(Q_0 + Q_1 + Q_2\) is a square matrix of 1’s of the same size. However, the exact form of \(Q_1\) and \(Q_2\) depends on the selected ordering of the ten possible subsets of size two of the set \\{1,\ldots,5\}, namely \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\} and \{4,5\}. When the subsets are ordered in precisely that fashion, one has
\[
Q_1 = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0
\end{pmatrix},
\]
and \(Q_2\) has 1’s exactly where \(Q_1\) has 0’s outside the main diagonal. Furthermore, formula (4) yields \(r_0 = 21/100\), \(r_1 = 1/100\) and \(r_2 = -9/100\), so that the matrix \(\Sigma\) derived from (5) is equal to the explicit expression (1.1) of Joe (1993).

The advantage of decomposition (5) is that the \(Q_d\)'s, which are the adjacency matrices of the so-called Johnson association scheme (cf., e.g., Constantine 1987, p. 298 ff.), may be simultaneously diagonalized and hence share the same set of eigenvectors. For instance, suppose \(\mathbb{I}\) is a vector of length \(N(N-1)/2\) with all
components equal to 1; this is a common eigenvector to \(Q_0, Q_1 \) and \(Q_2 \), since each of these three matrices has constant row sums, namely

\[
Q_d \mathbb{I} = \lambda_{d,0} = \begin{cases}
1 & \text{if } d = 0, \\
2(N - 2) & \text{if } d = 1, \\
(N - 2)(N - 3)/2 & \text{if } d = 2.
\end{cases}
\]

(6)

Accordingly, \(\mathbb{I} \) is an eigenvector of \(\Sigma \) whose corresponding eigenvalue equals

\[
\kappa_0 = \sum_{d=0}^{2} r_d \lambda_{d,0} = 0,
\]

as can easily be checked by substituting (4) and (6) into the above.

By use of general results of Yamamoto, Fujii & Hamada (1965) and Delsarte (1973) described in the Appendix, it may also be seen that there exist \(N - 1 \) orthogonal vectors of length \(N(N - 1)/2 \) that are eigenvectors of \(Q_0, Q_1 \) and \(Q_2 \), all of which correspond to the same eigenvalue \(\lambda_{d,1} \) of \(Q_d \), namely

\[
\lambda_{d,1} = \begin{cases}
1 & \text{if } d = 0, \\
N - 4 & \text{if } d = 1, \\
3 - N & \text{if } d = 2.
\end{cases}
\]

Finally, the same general theory implies the existence of \(N(N - 3)/2 \) orthogonal eigenvectors that are common to the \(Q_d \)'s, with corresponding eigenvalue

\[
\lambda_{d,2} = \begin{cases}
1 & \text{if } d = 0, \\
-2 & \text{if } d = 1, \\
1 & \text{if } d = 2.
\end{cases}
\]

It follows that \(\Sigma \) has only two strictly positive distinct eigenvalues, namely

\[
\kappa_1 = \sum_{d=0}^{2} r_d \lambda_{d,1} \quad \text{and} \quad \kappa_2 = \sum_{d=0}^{2} r_d \lambda_{d,2},
\]

which are of multiplicity \(N - 1 \) and \(N(N - 3)/2 \), respectively. The explicit expressions for \(\kappa_1 \) and \(\kappa_2 \) given in (3) obtain after simple calculations facilitated by the fact that \(\lambda_{0,\ell} + \lambda_{1,\ell} + \lambda_{2,\ell} = 0 \) when \(\ell \neq 0 \).

Note that if \(k = 2 \), then \(w_1 = w_2 = 1 \) and hence \(X^2 \) is asymptotically chi-square with \(\binom{N}{2} - 1 \) degrees of freedom.
3 Asymptotic null distribution of X^2 in the general case

Suppose more generally that it is wished to test whether all subsets of size $c = 1, \ldots, k$ are equally probable based on n random lottery draws of k integers among $\{1, \ldots, N\}$. If P_c denotes the collection of such subsets, the appropriate extension of statistics (1) and (2) may be written as

$$X^2 = \sum_{s \in P_c} \frac{(O_s - E_s)^2}{E_s},$$ \hspace{1cm} (7)

where O_s denotes the observed count for the subset $s \in P_C$ and

$$E_s = e_c \equiv n \frac{(N-c)^k}{k^c},$$ \hspace{1cm} (8)

stands for the expected count for the same subset.

It is proved in the Appendix that the asymptotic distribution of X^2 as defined in (7) is a linear combination of c independent chi-square random variables, viz.

$$\sum_{\ell=1}^c w_\ell \chi_{\nu_\ell}^2,$$ \hspace{1cm} (9)

where

$$w_\ell = \frac{(k-\ell) {N-c-\ell \choose k-c} {N-c \choose k} {k-c \choose k-c}}{c \choose k-c}$$

and

$$\nu_\ell = \frac{N}{\ell} - \frac{N}{\ell} = \frac{N}{\ell} \frac{N - 2\ell + 1}{N - \ell + 1}.$$

(10)

Of course, these formulas reduce to those already presented in Section 2 when $c = 2$, and they imply that $(N - 1)X^2/(N - k)$ is χ^2_{N-1} when $c = 1$, as already reported by Bellhouse (1982) and Joe (1993). Note also that $w_1 = \cdots = w_c = 1$ when $k = c$, in which case X^2 is asymptotically distributed as a chi-square random variable with $N_c - 1$ degrees of freedom.

4 Asymptotic moments and computation of approximate p-values

Since the asymptotic distribution of X^2 is also that of

$$T = \frac{N-c}{k-c} Y'Y$$
with Y a multivariate normal vector with zero mean 0 and covariance matrix Σ, a simple calculation using the fact that
\[
E(Y'Y) = \text{trace}(\Sigma) = \binom{N}{c} r_0 = \binom{N}{c} \left\{ \binom{N-c}{k-c} \binom{N}{k} \right\} \times \binom{N-c}{k-c} \binom{N}{k}
\]
shows that the expected value of (7) is
\[
\lim_{n \to \infty} E \left(X^2 \right) = E(T) = \binom{N}{c} - \binom{k}{c}.
\]
Similarly,
\[
\text{var}(Y'Y) = 2 \text{trace}(\Sigma\Sigma) = 2 \binom{N}{c} \sum_{d=0}^{c} r_d^2 \lambda_{d,0},
\]
because $\binom{N}{c} \lambda_{d,0}$ is the sum of the entries of Q_d. Using relations (11) and (14) in the Appendix, it is then a simple matter to check that
\[
\lim_{n \to \infty} \text{var} \left(X^2 \right) = \text{var}(T) = 2 \frac{(N-c)(N-c)}{(N-k)^2} \left\{ \sum_{d=0}^{c} \binom{N-c}{k-c} \binom{k-c}{d} \binom{c}{d} \right\} - 2 \frac{N-c}{(N-k)^2}.
\]
Unfortunately, it does not seem possible to write the sum in curly brackets in a more compact form. Nevertheless, these explicit expressions for the mean and the standard deviation of X^2 can be used to compute limiting p-values from a normal approximation. However,
\[
T \sim \sum_{\ell=1}^{c} w_\ell \chi_{\nu_\ell}^2
\]
has an asymmetric distribution, and a better approximation for $P(T > t)$ can be found by computing $P(S > t)$ for $S = a + b\chi_\nu^2$, where the scalars a, b and the degrees of freedom ν are chosen so that the first three moments (or equivalently the first three cumulants) of S match those of T. In the present case, this amounts to solving
\[
E(T) = \sum_{\ell=1}^{c} w_\ell \nu_\ell = a + b\nu, \quad \text{var}(T) = 2 \sum_{\ell=1}^{c} w_\ell^2 \nu_\ell = 2b^2\nu.
\]
and
\[
8 \sum_{\ell=1}^{c} w_{\ell}^3 \nu_{\ell} = 8b^3 \nu,
\]
which yields
\[
b = \frac{\sum_{\ell=1}^{c} w_{\ell}^3 \nu_{\ell}}{\sum_{\ell=1}^{c} w_{\ell}^2 \nu_{\ell}}, \quad \nu = \left(\frac{\sum_{\ell=1}^{c} w_{\ell}^2 \nu_{\ell}}{\sum_{\ell=1}^{c} w_{\ell}^2 \nu_{\ell}}\right)^2
\]
and
\[
a = \sum_{\ell=1}^{c} w_{\ell} \nu_{\ell} - b \nu.
\]

In practice, the approximation
\[
P(T > t) \approx P\left(a + b \chi^2_{\nu} > t\right)
\]
with the above values of \(a, b\) and \(\nu\) proves very good in the upper tail, i.e., for values of \(t\) corresponding to \(p\)-values that are lower than 50%.

5 Comparison with the statistic of Joe (1993)

As mentioned in the introduction, an alternative way to test for uniformity of sets of lotto numbers was investigated by Joe (1993), who replaced the statistic \(X^2 = (O - E)'(O - E)/e_c\) by another statistic \(J\) whose limiting distribution is chi-square with \(\binom{N}{c} - 1\) degrees of freedom. The general form of his statistic is
\[
J = (O - E)' \Sigma^{-} (O - E)/n,
\]
where \(\Sigma^{-}\) stands for a generalized inverse of \(\Sigma\). In the case \(c = 2\), one finds
\[
J = \frac{b_0}{n} (O - E)' (O - E) + \frac{b_1}{n} (O - E)' Q_1(O - E)
\]
\[
= \frac{b_0 e_2}{n} X^2 + \frac{b_1}{n} (O - E)' Q_1(O - E),
\]
where \(b_0 = \{(k - 1)N - 5k + 7\} B\) and \(b_1 = -(k - 2)B\) with
\[
B = \frac{N(N - 1)(N - 2)}{k(k - 1)^2(N - k)(N - k - 1)}.
\]

For the 6/49 Lottery, for example, \(b_0 = 222B\) and \(b_1 = -4B\) with \(B = (47 \times 28)/(75 \times 43) \approx 0.408\), and Joe’s statistic can be compared, for sufficiently
large n, to a χ^2_{1175}. In contrast, the simpler statistic X^2 as defined in (2) is asymptotically distributed as

$$\frac{215}{47} \chi^2_{28} + \frac{903}{1081} \chi^2_{1127},$$

with a mean of 1161 that is roughly the same as that of Joe’s statistic (equal to 1175), but a variance of 3581.69 compared to 2350.

What really matters, however, is the relative power of X^2 and J as test statistics along credible sets of alternatives. In order to make such a comparison, assume that the propensity p_i that ball i is drawn only depends on its intrinsic physical properties, such as its weight. Given a set D of balls in the urn, the probability that ball i is selected would then be proportional to p_i when $i \in D$. Thus if there are N balls to start with, and if D_r denotes the set of balls remaining in the urn after $r = 0, \ldots, 5$ balls have been selected, the probability of the event $B_{i,r+1}$, that the $(r + 1)$th ball selected is ball number i, would be given by

$$P(B_{i,r+1}|D_r) = \begin{cases}
\frac{p_i}{\sum_{j \in D_r} p_j} & \text{if } i \in D_r, \\
0 & \text{otherwise}.
\end{cases}$$

Unless $p_1 = \cdots = p_N$, this hypothesis provides a reasonable alternative against which to compare X^2 and J in practice. Furthermore, a smooth interpolation between this model and the null hypothesis of uniformity can be obtained by replacing each occurrence of p_i in the above formula by p_i^{α} with α running from 0 to 1.

As an illustration, Figure 1 shows the power function of the statistics X^2 and J for this family of alternatives when p_1, \ldots, p_{49} are the observed frequencies of the balls in the first $n = 1798$ draws of Canada’s Lotto 6/49. The curves are based on 10,000 Monte Carlo repetitions of the same number of draws from the alternative model for various values of α. Given the number of replicates, the vertical standard error in each of the curves is at most 1/200.

For $c = 1$, the statistics X^2 and J are equivalent. As can be seen from Figure 1, these statistics are quite powerful for this realistic set of alternatives. When $c = 2$, the power drops for both statistics but X^2 is considerably more powerful than J. This pattern may be expected to continue for larger values of c and similar types of alternatives. Of course, alternatives could also be found for which Joe’s statistic is more powerful than X^2.

Figure 1. *Power function for the statistics X^2 and J (solid line) when $c = 1$, and for the statistics X^2 (dotted line) and J (dashed line) when $c = 2$, for the continuous set of alternatives as defined in the text.*

6 Fairness of Canada’s Lotto 6/49

Lotto 6/49 was introduced in Canada in 1982 as a national lottery offering currently a weekly grand prize of at least $2,000,000 (currently worth about $1,300,000 US or $1,540,000 Euros) payable in one tax-free lump sum shared equally among ticket holders who selected the appropriate combination of six numbers from among integers 1 to 49. Depending on sales and number of consecutive draws without a grand prize winner, the jackpot can reach up to $20,000,000. Smaller prizes are available for players whose ticket matches three, four or five of the numbers drawn. A seventh “bonus number” is drawn without replacement and it is also possible to win a prize by matching five of the first six balls and this bonus number. While very similar lotteries exist elsewhere, Canada’s has been one of the longest-running; it thus provides ample data on which to apply the tests above.

The first weekly draw of Canada’s Lotto 6/49 was made June 12, 1982, and beginning September 1986, winning combinations have been selected twice a week, on Wednesdays and Saturdays. Results are posted as soon as they become available on provincial lottery board web sites, e.g., British Columbia’s Lottery Corporation site http://www.bclc.com/ or Loto-Québec’s French-language equivalent, located at http://www.loto-quebec.qc.ca/. Several privately-run sites also exist that provide comprehensive data bases including complete historical records of the draws, up-to-date frequency charts and various statistical tools to help players
spot “hot numbers” or “numbers that are due up” by checking on past occurrence of arbitrary combinations of one to six numbers since the lottery’s inception. Interested readers may refer, among others, to

http://www.lottohome.com/
http://webhome.idirect.com/~forward/
http://www.lotterycanada.com/lottery/
http://www.jlcooke.net/649/

To determine whether Canada’s Lotto 6/49 is fair, the results of the first \(n = 1798 \) draws were extracted from these sites. Figure 2 displays the observed variability in the occurrence of the various numbers in the six-ball winning combination. The minimum and maximum observed frequencies were 193 and 269, corresponding to balls 48 and 31, respectively.

![Figure 2](image)

Figure 2. Observed frequency of occurrence of balls 1 to 49 in the six-number winning combination of the first \(n = 1798 \) draws of Canada’s Lotto 6/49.

Table 1 shows the result of testing for equidistribution using statistic (7). For each possible subset size \(c = 1, \ldots, 6 \), the table gives \(e_c \), the expected count of all possible subsets \(s \) of size \(c \), the value of the statistic \(X^2 \), and the associated \(p \)-value based on the asymptotic distribution (9). It must be recognized that the dependence between the test statistics \(X^2 \) corresponding to different values of \(c \) makes a multiple-comparison adjustment difficult. Nevertheless, it is worth noting that the hypothesis of equidistribution cannot be rejected at the 5% level for any value of \(c \). In fact, even the statistic \(X^2 \) for individual numbers (\(c = 1 \)) is barely significant at the 10% level, suggesting that the drawing mechanism used is fair.
Table 1

Test of equidistribution for subsets of $c = 1, \ldots, 6$ balls in Canada’s Lotto 6/49 using the first 1798 draws spanning June 12, 1982, to April 14, 2001.

<table>
<thead>
<tr>
<th>c</th>
<th>e_c</th>
<th>X^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>220.1633</td>
<td>54.34</td>
<td>0.104</td>
</tr>
<tr>
<td>2</td>
<td>22.9337</td>
<td>1,190.95</td>
<td>0.300</td>
</tr>
<tr>
<td>3</td>
<td>1.9518</td>
<td>18,416.4</td>
<td>0.476</td>
</tr>
<tr>
<td>4</td>
<td>0.1273</td>
<td>211,899.2</td>
<td>0.479</td>
</tr>
<tr>
<td>5</td>
<td>0.0056</td>
<td>1,906,878</td>
<td>0.534</td>
</tr>
<tr>
<td>6</td>
<td>0.0001</td>
<td>13,982,018</td>
<td>0.633</td>
</tr>
</tbody>
</table>

A slightly more nuanced conclusion emerges when all seven numbers, including the “bonus number,” are regarded as the basic set and subsets are tested for uniformity as above. The results are in Table 2, which gives the value of statistic (7) when $k = 7$ and $N = 49$. In the case $c = 1$, the observed value of X^2 corresponds to a p-value of 0.044 which, multiple-comparison issue aside, would lead to the rejection of the hypothesis of equidistribution at the 5% significance level. Note, however, that this test does not take into account the order in which the balls are drawn, though this order is important in determining prize winners.

Table 2

Test of equidistribution for subsets of $c = 1, \ldots, 7$ balls in Canada’s Lotto 6/49 using the first 1798 draws spanning June 12, 1982, to April 14, 2001.

<table>
<thead>
<tr>
<th>c</th>
<th>e_c</th>
<th>X^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256.85714</td>
<td>57.64</td>
<td>0.044</td>
</tr>
<tr>
<td>2</td>
<td>32.10714</td>
<td>1,218.06</td>
<td>0.164</td>
</tr>
<tr>
<td>3</td>
<td>3.41565</td>
<td>18,487.51</td>
<td>0.357</td>
</tr>
<tr>
<td>4</td>
<td>0.29701</td>
<td>212,471.8</td>
<td>0.238</td>
</tr>
<tr>
<td>5</td>
<td>0.01980</td>
<td>1,906,599</td>
<td>0.544</td>
</tr>
<tr>
<td>6</td>
<td>0.00090</td>
<td>13,983,809</td>
<td>0.853</td>
</tr>
<tr>
<td>7</td>
<td>0.00002</td>
<td>85,898,786</td>
<td>0.555</td>
</tr>
</tbody>
</table>
In Tables 1 and 2, the p-values given by the limiting distribution were first found by the method of Imhof (1961). The accuracy of this numerical integration technique, which can be very slow in the upper tail, was set to be within 10^{-7}. The three-moment chi-square approximation to the limiting p-values was found to be exact to the fourth decimal place. For $c \geq 2$, the normal approximation actually seems quite satisfactory. Note, however, that the asymptotic distribution (9) is a poor approximation to the correct finite n distribution for $c = 6$ or 7, because of the overwhelming number of cells having a zero count, and the low probability of any cell containing more than one observation. In fact, the values $X^2 = 13,982,018$ and $X^2 = 85,898,786$ observed when $c = 6$ in Table 1 and $c = 7$ in Table 2 respectively, are the smallest possible values that this statistic could take in the Lotto 6/49, and hence the real p-value is 1 in both cases. In general, when the number n of draws is less than $\binom{N}{k}$ in a k/N lottery, the probability of X^2 taking its smallest value $x_{\text{min}} = \binom{N}{k} - n$ is the same as the probability that these first n draws yield different outcomes, viz.

$$P(X^2 = x_{\text{min}}) = \prod_{i=1}^{n} \left(1 - \frac{i - 1}{\binom{N}{k}}\right)$$

$$\approx \exp \left\{ -\frac{\sum_{i=1}^{n}(i - 1)}{\binom{N}{k}} \right\} = \exp \left\{ -\frac{n(n-1)}{2\binom{N}{k}} \right\},$$

so that for Canada’s Lotto 6/49, for instance, $P(X^2 = 13,982,018) > 1/2$ for $n \leq 4403$, i.e., of the order of 42 years at the rate of two draws per week. It is not surprising, therefore, that no two draws have yet had the same outcome in this lottery’s 20-year history.

Although it may be seen through similar calculations that the asymptotic distribution of X^2 slowly deteriorates as c increases, there is no reason to doubt its reliability for values $c = 2, 3$ and 4 which are of most practical importance.

7 Conclusion

When using a large random sample of data to test the hypothesis of uniformity of subsets of $c = 1, \ldots, k$ winning numbers in a lottery of the type k/N, Pearson’s standard goodness-of-fit statistic X^2 has been shown to be approximately distributed, not in the usual chi-square form, but rather as a weighted linear combination of c independent chi-square random variables. This distribution is easily and accurately approximated by a simple linear transform of a single chi-square random variable, and the resulting test is more powerful than the alternative test of Joe (1993) for a realistic type of alternative.
Based on the data currently available, neither Pearson’s statistic X^2 nor Joe’s test (for which the p-values are larger than 0.66 for $c = 2$, for both the 6- and 7-ball analyses) provide any serious ground for suspecting lack of uniformity in the results of Canada’s 20-year old Lotto 6/49. There might be situations in which the assumptions behind the above analysis would not apply. For example, if the mechanism or the balls themselves are changed, suitable tests for equiprobability based on X^2 using the known change point could be developed, but the power reported here would no longer be valid. Also, in using X^2 or the alternative statistic of Joe (1993) on lottery data, one should bear in mind that aggregate statistics such as these are not designed to detect the (remote) possibility of serial dependence between successive draws. Nevertheless, the tests developed here are particularly well adapted to testing the randomness of “QuickPick” selections, which often run in the millions, even for a given draw.

Appendix

This Appendix shows how to derive the asymptotic distribution (9) for Pearson’s statistic (7) in the general case $1 \leq c \leq k$. As in the case $c = 2$ treated in Section 2, the proof hinges on the computation of the eigenvalues of the covariance matrix Σ (which does not depend on n, as explained earlier). This matrix is

$$\Sigma = \text{cov} \left(\frac{O - E}{\sqrt{n}} \right),$$

where O and E denote the vectors of observed and expected counts for all possible elements $s \in P_c$, listed in some order that plays no role in the sequel. For this reason, entries of Σ are simply indexed by elements of P_c, as was done in Section 2.

Let s and t be two elements of P_c, and let A_s and A_t denote the events that a given draw includes the balls in s and t, respectively. Let also $d = |s \setminus t| = |t \setminus s| \leq c$.

The (s,t)-entry of Σ is then given by

$$\sigma(s,t) = P(A_s \cap A_t) - P(A_s)P(A_t)$$

$$= \frac{\binom{N-c-d}{k-c-d}}{\binom{N}{k}} - \frac{\binom{N-c}{k-c}}{\binom{N}{k}} \times \frac{n-k-c}{\binom{N}{k}} \equiv r_d, \quad (11)$$

with the understanding that $\binom{y}{x} = 0$ unless $0 \leq y \leq x$, and $\binom{0}{0} = 1$ as usual.

Now introduce square matrices Q_0, \ldots, Q_c each of size $\binom{N}{c}$ by setting

$$Q_d(s,t) = 1(|s \cap t| = c - d),$$
for all $s, t \in P_c$, i.e., for arbitrary subsets s and t of $\{1, \ldots, N\}$ of size c. One may then write

$$\Sigma = \sum_{d=0}^{c} r_d Q_d.$$

As mentioned in Section 2, the Q_d's are the adjacency matrices of the so-called Johnson association scheme, and hence they have the same eigenspace decomposition (Yamamoto et al. 1965). For this specific scheme, Delarte (1973) showed that if ν_ℓ is defined as in (10) for $0 \leq \ell \leq c$, then there exists a set of ν_ℓ linearly independent vectors of length $\binom{N}{\ell}$ which are eigenvectors of Q_0, \ldots, Q_c simultaneously. Delarte further proved that these ν_ℓ eigenvectors correspond to the same eigenvalue (of multiplicity ν_ℓ) of Q_d, given by

$$\lambda_{d, \ell} = \sum_{j=0}^{d} (-1)^j \binom{\ell}{j} \binom{c-\ell}{d-j} \binom{N-c-\ell}{d-j}.$$

Consequently, Σ has at most $c + 1$ different eigenvalues, given by

$$\kappa_\ell = \sum_{d=0}^{c} r_d \lambda_{d, \ell}, \quad 0 \leq \ell \leq c. \tag{12}$$

As for the case $c = 2$, $\kappa_0 = 0$ and the formula can be simplified considerably for $1 \leq \ell \leq c$, but first it may be worth pointing out that $\lambda_{d, \ell} = E(d, \ell)$ with

$$E(d, x) = \sum_{j=0}^{d} (-1)^j \binom{x}{j} \binom{c-x}{d-j} \binom{N-c-x}{d-j},$$

which is the so-called Eberlein polynomial (Eberlein 1964).

In order to reduce formula (12), first note that upon changing the order of summation,

$$\sum_{d=0}^{c} \lambda_{d, \ell} = \sum_{d=0}^{c} \sum_{j=0}^{d} (-1)^j \binom{\ell}{j} \binom{c-\ell}{d-j} \binom{N-c-\ell}{d-j}$$

$$= \sum_{j=0}^{c} (-1)^j \binom{\ell}{j} \sum_{d=j}^{c} \binom{c-\ell}{d-j} \binom{N-c-\ell}{d-j}$$

$$= \sum_{j=0}^{c} (-1)^j \binom{\ell}{j} \sum_{x=0}^{c-\ell} \binom{c-\ell}{x} \binom{N-c-\ell}{x}.$$

The sum over j effectively runs only to ℓ, and the inner sum over $x = d - j$ is equal to $\binom{N-2\ell}{c-\ell}$ by Vandermonde’s convolution formula (cf., e.g., Constantine

16
1987, p. 6, or Riordan 1979, p. 8). Consequently,

$$\sum_{d=0}^{c} \lambda_{d, \ell} = \binom{N - 2\ell}{c - \ell} \sum_{j=0}^{\ell} (-1)^j \binom{\ell}{j} = \binom{N - 2\ell}{c - \ell} (1 - 1)^\ell,$$

which vanishes except when \(\ell = 0 \), in which case the sum is \(\binom{N}{c} \). As a result,

$$\kappa_0 = \binom{N}{k} \left\{ \sum_{d=0}^{c} \binom{c}{d} \binom{N - c}{d} \binom{N - c - d}{k - c - d} \right\} - \binom{N}{c} \binom{N - c}{k - c}^2.$$

But

$$\binom{N - c}{d} \binom{N - c - d}{k - c - d} = \binom{k - c}{d} \binom{N - c}{N - k},$$

so that, through another application of Vandermonde’s identity,

$$\kappa_0 = \binom{N}{k} \binom{N - c}{N - k} \left\{ \sum_{d=0}^{c} \binom{c}{d} \binom{k - c}{k - c - d} \right\} - \binom{N}{c} \binom{N - c}{k - c}^2 = 0,$$

as can be readily checked.

Taking \(1 \leq \ell \leq c \) from now on, one has

$$\kappa_\ell = \frac{1}{\binom{N}{k}} \sum_{d=0}^{c} \binom{N - c - d}{k - c - d} \sum_{j=0}^{d} (-1)^j \binom{\ell}{j} \binom{c - \ell}{d - j} \binom{N - c - \ell}{d - j}.$$

Changing the order of summation and setting \(x = d - j \) as above, one finds that

$$\kappa_\ell = \frac{1}{\binom{N}{k}} \sum_{j=0}^{\ell} \sum_{x=0}^{c - \ell} (-1)^j \binom{\ell}{j} \binom{c - \ell}{x} \binom{N - c - \ell}{x} \binom{N - c - x - j}{N - k}.$$

Reversing the order of summation once more, and using the fact that the inner sum is

$$\sum_{j=0}^{\ell} (-1)^j \binom{\ell}{j} \binom{N - c - x - j}{N - k} = \binom{N - c - \ell - x}{N - k - \ell}$$

(cf., e.g., Riordan 1979, formula (5a), p. 8) one gets

$$\kappa_\ell = \frac{1}{\binom{N}{k}} \sum_{x=0}^{c - \ell} \binom{c - \ell}{x} \binom{N - c - \ell}{x} \binom{N - c - \ell - x}{N - k - \ell}.$$
At this point, the fact that
\[
\binom{N - c - \ell}{x} \binom{N - c - x}{N - k - \ell} = \binom{N - c - \ell}{N - k - \ell} \binom{k - c}{x}
\]
may then be exploited to write
\[
\kappa_\ell = \frac{1}{\binom{N}{k}} \binom{N - c - \ell}{N - k - \ell} \sum_{x=0}^{c-\ell} \binom{c - \ell}{x} \binom{k - c}{x},
\]
and the latter immediately reduces to
\[
\kappa_\ell = \frac{\binom{k - \ell}{k - c} \binom{N - c - \ell}{k - c}}{\binom{N}{k}}
\]
through a final application of Vandermonde’s identity.

Finally, the weights \(w_\ell = \kappa_\ell/e_c, \) \(1 \leq \ell \leq c, \) may be deduced easily from formulas (8) and (13).

Remark. As already noted in the case \(c = 2, \) the eigenvector corresponding to \(\kappa_0 \) is the column vector \(\mathbb{I} \) whose \(\binom{N}{c} \) entries are equal to one. Indeed, the latter is an eigenvector of all the \(Q_d \)'s and hence of \(\Sigma. \) To see this, observe that for fixed \(s \in P_c \) and \(0 \leq d \leq c, \) one has
\[
Q_d \mathbb{I}(s) = \sum_{t \in P_c} 1(|s \cap t| = c - d) = \binom{c}{d} \binom{N - c}{d} = \lambda_{d,0},
\]
so that \(\Sigma \mathbb{I} = k_0 \mathbb{I} \) with
\[
\kappa_0 = \sum_{d=0}^{c} r_d \binom{c}{d} \binom{N - c}{d}.
\]
Since \(\mathbb{I}'\Sigma \mathbb{I} \) is the variance of \(\mathbb{I}'(O - E) \mathbb{I} = 0, \) the fact that \(\kappa_0 = 0 \) does not come as a surprise.

Acknowledgements

This research was funded in part by the Natural Sciences and Engineering Research Council of Canada and by the Fonds pour la formation de chercheurs et l’aide à la recherche du Gouvernement du Québec.
References

